Robustness of network $ow control against disturbances and time-delay

نویسندگان

  • Xingzhe Fan
  • Murat Arcak
  • John T. Wen
چکیده

This paper studies robustness of Kelly’s source and link control laws in (J. Oper. Res. Soc. 49 (1998) 237) with respect to disturbances and time-delays. This problem is of practical importance because of unmodelled $ows, and propagation and queueing delays, which are ubiquitous in networks. We ;rst show Lp-stability, for p∈ [1;∞], with respect to additive disturbances. We pursue L∞-stability within the input-to-state stability (ISS) framework of Sontag (IEEE Trans. Automat. Control 34 (1989) 435), which makes explicit the vanishing eAect of initial conditions. Next, using this ISS property and a loop transformation, we prove that global asymptotic stability is preserved for suBciently small time-delays in forward and return channels. For larger delays, we achieve global asymptotic stability by scaling down the control gains as in Paganini et al. (Proceedings of 2001 Conference on Decision and Control, Orlando, FL, December 2001, pp. 185–190) c © 2004 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second Order Sliding Mode Observer-Based Control for Uncertain Nonlinear MEMS Optical Switch

This paper studies theuncertain nonlinear dynamics of a MEMS optical switch addressing electrical, mechanical and optical subsystems. Recently, MEMS optical switch has had significant merits in reliability, control voltage requirements and power consumption. However, an inherent weakness in designing control for such systems is unavailability of switch position information at all times due to t...

متن کامل

Development of RMPC Algorithm for Compensation of Uncertain Time-Delay and Disturbance in NCS

In this paper‎, ‎a synthesis method based on robust model predictive control is developed for compensation of uncertain time-delays in networked control systems with bounded disturbance‎. ‎The proposed method uses linear matrix inequalities and uncertainty polytope to model uncertain time-delays and system disturbances‎. ‎The continuous system with time-delay is discretized using uncertainty po...

متن کامل

A Novel Flow Controller Design for High-Speed Communication Networks

A new approach to ow control in high speed communication network is proposed where the problem of ow control within a virtual circuit is modeled as a dynamic system with time delays and disturbances. In the proposed ow controller design, we apply: (1) a modiied Smith predictor to predict the backlog in each channel along a virtual circuit; (2) fuzzy CMAC neural networks to predict the time-vary...

متن کامل

Sliding Mode with Neural Network Regulator for DFIG Using Two-Level NPWM Strategy

This article presents a sliding mode control (SMC) with artificial neural network (ANN) regulator for the doubly fed induction generator (DFIG) using two-level neural pulse width modulation (NPWM) technique. The proposed control scheme of the DFIG-based wind turbine system (WTS) combines the advantages of SMC control and ANN regulator. The reaching conditions, robustness and stability of the sy...

متن کامل

Fractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances

In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004